

HEWLETT-PACKARD COMPANY

130B
 OSCILLOSCOPE

MODEL 130B/BR OSCILLOSCOPE

SERIALS PREFIXED: 946 -

SPECIFICATIONS

SWEEP

Sweep Range: $\quad 0.2 \mu \mathrm{sec} / \mathrm{cm}$ to at least $12.5 \mathrm{sec} / \mathrm{cm} .21$ calibrated sweeps, accurate within $\pm 5 \%$, in a $1-2-5-10$ sequence, $1 \mu \mathrm{sec} / \mathrm{cm}$ to $5 \mathrm{sec} / \mathrm{cm}$. Vernier permits continuous adjustment of sweep time between calibrated steps and extends slowest sweep time to at least $12.5 \mathrm{sec} / \mathrm{cm}$.

Magnifier: X5 Magnifier may be used on all ranges and expands fastest sweep to $0.2 \mu \mathrm{sec} / \mathrm{cm}$. Accuracy within 10%.

Synchronization: Internally from line voltage or from signals causing $1 / 2$ centimeter or more vertical deflection. Externally from 0.5 volts peak-to-peak or more.

Trigger Point: Continuously adjustable from -30 to +30 volts on either positive or negative slope of external synchronizing signal, or from any point of the vertical signal presented on the screen.

Preset Triggering: Switch position on sweep mode control selects optimum setting for automatic triggering.

INPUT AMPLIFIERS

Sensitivity: $1 \mathrm{mv} / \mathrm{cm}$ to at least $125 \mathrm{v} / \mathrm{cm}$. 15 calibrated ranges, accurate within $\pm 5 \%$, in a $1-2-5-10$ sequence, $1 \mathrm{mv} / \mathrm{cm}$ to $50 \mathrm{v} / \mathrm{cm}$. Vernier permits continuous adjustment between ranges and decreases sensitivity of $50 \mathrm{v} / \mathrm{cm}$ range to at least 125 volts/cm. Input voltage rating 600 volts dc or rms.

Phase Shift: Within $\pm 1^{\circ}$ relative phase shift at frequencies up to 50 kc between vertical and horizontal amplifiers with verniers in cal.

Stability: $\quad 1 \mathrm{mv} / \mathrm{hr}$ after warmup.
Bandwidth: DC Coupling: dc to 300 kc . AC Coupling: 2 cps to 300 kc . Specified bandwidth is independent of sensitivity setting.

Balanced Input: On $1,2,5,10,20$ and $50 \mathrm{mv} / \mathrm{cm}$ ranges. Cabinet Mount input impedance: 2 megohms shunted with approximately $25 \mu \mu \mathrm{f}$. Rack Mount input impedance: 2 megohms, approximately $125 \mu \mu \mathrm{f}$ shunt capacity. Disconnecting the wires at the front panel which connect to the rear terminals reduces the input capacity to approximately $25 \mu \mu \mathrm{f}$.

Common Signal Rejection
(Balanced input only):

Rejection at least 40 db . Common signal must not exceed 1.5 volts.

SPECIFICATIONS (CONT'D.)

$\begin{array}{ll}\text { Single Ended Input: } & \begin{array}{l}\text { Cabinet Mount input impedance: } 1 \text { megohm shunted with approxi- } \\ \text { mately } 50 \mu \mu \mathrm{f} . \text { Rack Mount input impedance: } 1 \text { megohm, approxi- } \\ \text { mately } 200 \mu \mu \mathrm{f} \text { shunt capacity. Disconnecting the wires at the front } \\ \text { panel connecting to the rear terminals reduces the input capacity } \\ \text { to approximately } 50 \mu \mu \mathrm{f} .\end{array} \\ \text { Internal Calibrator: } & \begin{array}{l}300 \text { millivolts peak-to-peak } \pm 2 \%, 300 \text { cycles squarewave applied } \\ \text { to vertical or horizontal amplifiers by CAL position of input } \\ \text { attenuators. }\end{array}\end{array}$

GENERAL

> Illuminated Graticule:

Edge lighted graticule with controlled illumination, $10 \mathrm{~cm} \times 10 \mathrm{~cm}$, marked in centimeter squares with 2 mm subdivisions, on major horizontal and vertical axes. Effectively shielded from ambient light.

CRT Plates: $\begin{aligned} & \text { Direct connection to deflection plates via terminals on rear. Sensi- } \\ & \text { tivity approximately } 20 \text { volts } / \mathrm{cm} .\end{aligned}$ tivity approximately 20 volts $/ \mathrm{cm}$.

Intensity Modulation: Terminals on rear; 20 volts positive signal blanks CRT at normal intensity.

Cathode Ray Tube: 5 AQP mono-accelerator flat face type with 3000 volt accelerating potential. Available with P1, P2, P7 or P11 screen.

Dimensions: Cabinet Mount: 9-3/4 in. wide, 15 in. high, 21-1/4 in. deep. Rack Mount: 19 in. wide, 8-3/4 in. high, 22 in. deep, 19-3/4 in. deep behind panel.

Weight: Cabinet Mount: Net 41 lbs., shipping 54 lbs. Rack Mount: Net 47 lbs, shipping 62 lbs.

Power Supply: $\quad 115 / 230$ volts $\pm 10 \%, 50 / 1000$ cycles, 160 watts.
Filter Supplied: Color of filter compatible with screen phosphor. Green for P1 and P2, Amber for P7, Blue for P11.

Rack Mount: Has rear terminals in parallel with front panel connections.
Accessories Furnished: Supplied with Rack Mount. 130B-12P and Q Mounting Brackets (pr.) Two 125-57 Plugs (mate with rear terminals). Two 125-59 Clamps for 125-57 Plugs.

Accessories Available: AC-83A Viewing Hood; face-fitting molded rubber. Additional Mounting Brackets. 130B-12P (left) and 130B-12Q (right)
SECTION I GENERAL DESCRIPTION PAGE
1-1 General 1-1
1-2 Damage in Transit I-1
1-3 Power Line Voltages I - 1
1-4 Power Cord I-1
1-5 Installation of Rack Mount I - 1
SECTION II
OPERATING INSTRUCTIONS
2-1 Controls and Terminals II - 1
2-2 Rear-Access Terminals II - 1
2-3 Warm-Up Drift II - 1
2-4 AC or DC Coupling II - 2
2-5 Balanced Inputs H1-2
2-6 Operating Procedures II - 2
SECTION III THEORY OF OPERATION
3-1 General Content III - 1
3-2 Over-All Operation III - 1
3-3 Vertical Amplification Channel III - 1
3-4 Horizontal Amplification Channel III - 2
3-5 Sweep Generator III - 2
3-6 Low Voltage Power Supply III - 3
3-7 High Voltage Power Supply III - 4
3-8 Calibrator III - 4
SECTION IV MAINTENANCE
4-1 Introduction IV - 1
4-2 Simple Check Procedure IV - 1
4-3 Isolating Troubles to Major Sections IV - 3
4-4 Removing the Cabinet IV - 3
4-5 Connecting for 230 Volt Operation IV - 3
4-6 Tube Replacement IV - 4
4-7 Condensed Test and Adjustment Procedure IV - 5
4-8 Adjustment Procedure IV - 9
4-9 Turn On IV - 9
4-10 Power Supplies IV - 9
4-11 Replacing and Adjusting the CRT IV - 11
4-12 Checking and Adjusting the Calibrator IV - 13
4-13 Adjusting the Vertical Amplifier IV - 13
4-14 Adjusting the Horizontal Amplifier IV - 15
4-15 Phase Shift Adjust IV - 15
4-16 Adjusting Preset IV - 17
4-17 Adjusting the Sawtooth Generator and Sweep Amplifier IV - 17
SECTION V
TABLE OF REPLACEABLE PARTS
5-2 Table of Replaceable Parts V-2

CATHODE RAY TUBE WARRANTY
The cathode ray tube supplied in your Hewlett-Packard Oscilloscope and replacement cathode ray tubes purchased from (®), are guaranteed against electrical failure for one year from the date of sale by the Hewlett-Packard Company. Broken tubes or tubes with burned phosphor are not included in this guarantee.

Your local Hewlett-Packard representative maintains a stock of replacement tubes and will be glad to process your war ranty claim for you. Please consult him.

Whenever a tube is returned for a warranty claim, the reverse side of this sheet must be filled out in full and returned with the tube. Follow shipping instructions carefully to insure safe arrival, since no credit can be allowed on broken tubes.

SHIPPING INSTRUCTIONS

1) Carefully wrap the tube in $1 / 4^{\prime \prime}$ thick cotton batting or other soft padding material.
2) Wrap the above in heavy kraft paper.
3) Pack in a rigid container which is at least 4 inches larger than the tube in each dimension.
4) Surround the tube with at least four inches of packed excelsior or similar shock absorbing material. Be certain that the packing is tight all around the tube.
5) Tubes returned from outside the continental United States should be packed in a wooden box.
6) Ship prepaid preferably by AIR FREIGHT or RAILWAY EXPRESS. We do not recommend parcel post or air parcel post shipment.

FROM:
DATE: \qquad

NAME:
COMPANY: \qquad
ADDRESS: \qquad
\qquad

Person to contact for further information:
NAME:
TITLE:
COMPANY: \qquad
ADDRESS: \qquad
\qquad

To process your claim quickly please enter the information indicated below:

1) INSTRUMENT MODEL SERIAL
2) TUBE TYPE SERIAL
3) ORIGINAL TUBE REPLACEMENT TUBE \qquad
4) YOUR PURCHASE ORDER NO.
5) DATE PURCHASED
6) PURCHASED FROM
7) COMPLAINT: (Please describe nature of trouble) \qquad
\qquad
\qquad
8) OPERATING CONDITIONS: (Please describe conditions prior to and at time of failure \qquad
\qquad
\qquad

SIGNATURE

SECTION I GENERAL DESCRIPTION

1-1 GENERAL

The Model 130B dc to 300 kc Oscilloscope is a general purpose oscilloscope. It can be used with either internal or external sweeps which can be either internally or externally synchronized and it can be obtained in either the cabinet or rack type mounting. Because of its high sensitivity and balanced input, the Model I30B may often be used directly with transducers, enabling you to see a direct presentation of phenomena desired without having to resort to preamplifiers.

Some of the special features of this oscilloscope are as follows:
A. LINEAR INTEGRATOR SWEEP GENERATOR

The accurate direct reading sweeps are obtained from a feedback type integrator which insures a high order linearity and stability. This type of sweep generator, is more reliable and independent of tube characteristics than other types of sweep generator.

B. X5 SWEEP EXPANSION

You speed observation and analysis of transients by expanding a two centimeter segment of the trace to 10 centimeters for easy viewing of detail. This X5 sweep expander, may be used on all sweep time settings and expands the fastest sweep time to .2 microsecond/cm.

C. CALIBRATED AMPLIFIERS

Voltage measurements of various waveforms are quickly made with the 130B, accurate within $\pm 5 \%$. A built-in calibrator which is accurate within $\pm 2 \%$ permits quick verification and standardization of the amplifier gain.

Phase shift measurements can be made accurately with this oscilloscope over a wide range of input frequencies.

1-2 DAMAGE IN TRANSIT

This instrument should be thoroughly inspected when it is received. If any damage is evident, refer to the "Claim for Damage in Shipment"' paragraph on the Warranty sheet in this manual.

1-3 POWER LINE VOLTAGES

The Oscilloscope is shipped from the factory wired for 115 volts ac line operation, unless otherwise specified. However, the instrument may also be operated from a 230 volts ac line source if the proper conversion is made to the power transformer. This conversion is described in the Maintenance Section (Section IV).

1-4 POWER CORD

The three conductor power cable supplied with the instrument is terminated in a polarized three prong male connector recommended by the National Electrical Manufacturers' Association. The third contact is an offset round pin, added to a standard two-blade ac plug, which grounds the instrument chassis when used with the appropriate receptacle. An adapter should be used to connect the NEMA plug to a standard two contact output. When the adapter is used, the ground connection becomes a short lead from the adapter which should be connected to a suitable ground for the protection of operating personnel.

1-5 INSTALLATION OF RACK MOUNT

The (40) 130BR is designed so that it can be supported in a 19 inch rack by the front panel in the usual manner; or, the dust cover may be rigidly mounted in the rack with brackets as shown in Figure 1-1. In the latter case, the chassis is supported by the dust cover and may be slipped in
or out easily; the screws through the front panel merely holding the chassis in place. To rack mount the 130BR using the brackets:

1) Mount the bracket as shown in Figure 1-1 with screws through the outside holes of the brackets. The length of these screws may be chosen to space the front panel from the panel rails as desired. The brackets at the rear are not necessary in most installations but can be used if added support is required. These brackets are available from the Hewlett-Packard Company as an accessory item.
2) Remove the dust cover from the 130 BR and mount it in the brackets with the 10-32 trusshead screws provided.
3) Slip the 130 BR into the dust cover and fasten in place with screws through the front panel.

(C)

Figure 1-1. Model 130BR Installation

SECTION II OPERATING INSTRUCTIONS

2-1 CONTROLS AND TERMINALS

Front panel operation controls are shown in Figure 2-1. This description of the operating controls enables you to operate the instrument if you have a basic knowledge of oscilloscope technique. Detailed operating procedures are given in the operating plates.

INTERNAL SWEEP CONTROLS

SWEEP TIME/CM -

This switch determines the speed at which the crt beam crosses the screen. HORIZ. SENSITIVITY switch must be in an INT. SWEEP position or internal sweeps are not generated. Associated with the SWEEP TIME/CM switch is a concentric VERNIER which provides continuous adjustment of sweep speed between steps. A XS sweep magnifier operates on all ranges.

SYNC -

This three position switch lets the sweep be triggered either internally or externally. Internal triggering can be accomplished from a line frequency signal or from an applied vertical input signal of sufficient amplitude to produce a onehalf centimeter deflection. External triggering can be produced by signals having amplitude greater than 0.5 volt, peak-to-peak.

SWEEP MODE -

As this control is rotated from the extreme clockwise position, the sweep generator will pass from an un-synchronized free-running (FREE RUN) condition through a condition where only triggered operation is possible (TRIGGERED) to a position in which sweeps will not occur. At the extreme counterclockwise position the control switches into a PRESET position. This position provides optimum triggering bias for nearly all waveforms.

TRIGGER LEVEL -

This continuous control selects the level on the sync waveform where triggering is to occur. When the TRIGGER LEVEL control is set to zero, the trigger circuits are the most sensitive.

TRIGGER SLOPE -

This two-position switch, concentric with TRIGGER LEVEL, permits triggering to occur on either the positive or negative slope of internal, external or line voltage sync signals.

Horizontal or Sync INPUT -
A set of three binding posts used for receiving external sync voltages and external generated sweeping voltages. On the rack mount model only, a 3 -conductor receptacle $\mathrm{Jl02}$, mounted at the rear of the instrument, is connected in parallel with the binding posts.

2-2 REAR-ACCESS TERMINALS
 ----- DANGER - HIGH VOLTAGE----

The following terminals are accessible through the rear access plate of the instrument cabinet: Horizontal and vertical deflection plates, and a terminal for crt intensity (Z-axis) modulation. Sce Figures 2-8 and 2-10.

2-3 WARM-UP DRIFT

When the oscilloscope is first turned on, drift in the trace will be quite noticeable, particularly at high sensitivities, the trace drift is fastest immediately following turn-on, becoming slower as the instrument warms up. Because of this drift, fine adjustment of amplifier balance should not be attempted until the instrument is thoroughly warm. For most purposes a 5 minute warm-up will be adequate.

2-4 AC OR DC COUPLING

AC coupling permits high gain to be employed without regard for the dc level involved. In the $A C$ position the input signal (vertical or horizontal) is coupled to the amplifier through a capacitor which removes the dc component from the input. This coupling circuit has a low frequency cut-off at 2 cps . To avoid degrading input pulses or square waves below 200 cps it is advisable to use dc coupling. WHEN USING DC COUPLING THE AVERaGE Value of the dC DETERMINES THE POSITION OF THE SWEEP ON THE OSCILLOSCOPE. IF YOU ARE UNABLE TO FIND THE TRACE WITH THE VERTICAL POSITION CONTROL WHEN USING DC COUPLING, TRY AC COUPLING. When $A C$ coupled the maximum dc that may be applied is 600 volts.

2-5 BALANCED INPUTS

The instrument will accept balanced input signals on the six most sensitive ranges. This arrangement is shown in Figure 2-7.

Driving the instrument from a balanced source can be very effective in removing the unwanted stray pickup that would otherwise obscure the desired information. To take advantage of the noise reduction that is possible with a balanced input, you must be sure that neither terminal of the source is connected to ground, and use double conductor shielded cable between the source and oscilloscope. The input cable shield must be connected to a suitable ground, either at the oscilloscope or some other point. With these precautions in the external input circuit, any stray signals (noise, hum, etc.) will be coupled equally to the two input terminals, and be cancelled by the differential amplifiers. Since the desired information is applied between the two input terminals, it will be amplified and displayed in the normal manner. Since the noise is a problem
mainly at low level, the fact that balanced input is available only on the most sensitive ranges is generally not a serious limitation.

The common-mode signal rejection will be at least 40 db ($1 / 100$ of the input signal). When using a balanced input certain limitations must be considered. The proper operating levels must be maintained on the input amplifier: The COM-MON-MODE SIGNAL VOLTAGE MUST NOT EXCEED 1.5 VOLTS EITHER POSITIVE OR NEGATIVE, ON EITHER INPUT TERMINAL. Note that this is the sum of all voltages (dc plus peak ac).

NOTE

If balanced ac coupling is desired, it is necessary to connect a capacitor in the external signal path to the middle terminal, since a dc voltage on this terminal only unbalances the amplifier. This arrangement is shown in Figure 2-7.

2-6 OPERATING PROCEDURES

Basic operating procedures are described in the following illustrations. Positions of controls are different on the cabinet model but their functions are identical to those of the rack model.

Figure
 Description

2-2 VERTICAL BALANCE ADJUSTMENT

2-3 HORIZONTAL BALANCE ADJUSTMENT
2-4 INTERNAL SWEEP-INTERNAL SYNCHRONIZATION
2-5 INTERNAL SWEEP-EXTERNAL SYNCHRONIZATION
2-6 EXTERNAL HORIZONTAL INPUT
2-7 AC COUPLING BALANCED INPUT
2-8 CONNECTION TO CRT DEFLECTION Plates
2-9 EXTERNAL INTENSITY MODULATION
2-10 ALIGNING SCOPE TRACE WITH GRATICULE

In Figure 2-2, delete step 12 Adj. control on the etched board) is provided to balance the age 3
VERNIER. 0

VERTICAL BALANCE ADJUSTMENT

After Warm-Up:

1. Turn SWEEP MODE control to FREE RUN.
2. Set HORIZ. SENSITIVITY switch to INT. SWEEP XI.
3. Set SWEEP TIME/CM switch so that a convenient base line is formed. (Any sweep time faster than 50 MILLISECONDS/CM is satisfactory.)
4. Short vertical input terminals together.
5. Set $A C-D C$ switch to $D C$.
6. Turn VERNIER to CAL.
7. Center trace with VERT. POS. control.
8. Set VERT. SENSITIVITY to 50 MILLIVOLTS/ CM.
9. Center trace with coarse (screwdriver) VERT. DC BAL. control or with fine (knob) control if unbalance is slight.
10. Set VERT. SENSITIVITY to 5 MILLIVOLTS/ CM, repeat step 9.
11. Set VERT. SENSITIVITY to 1 MILLIVOLT/ CM, repeat step 9.
12. Turn VERNIER fuily CCW, repeat step 9.

Repeat steps 6 through 12 until the trace does not move as the VERNIER control is rotated.

Figure 2-2

In Figure 2-3, delete step 9. A separate adjustment (Bal. Adj. control on the etched board) is provided to lance the

HORIZONTAL BALANCE ADJUSTMENT

After Warm-Up:

1. Short together the horizontal input terminals.
2. Set $A C-D C$ switch to $D C$.
3. Set HORIZ. SENSITIVITY to 50 MILLIVOLTS/CM.
4. Turn VERNIER to CAL.
5. Center spot with HORIZ. POS. control, if necessary, adjust vertical position.
6. Set HORIZ. SENSITIVITY to 5 MALIVOLTS/CM.
7. Return the spot to center with coarse (screwdriver) HORIZ. DC BAL. control or with the fine (knob) control if the unbalance is slight.
8. Set HORIZ. SENSITIVITY to 1 MILLIVOLT/ CM, repeat step 7.

9. Turn VERNIER fully CCW, repeat step 7.

Repeat steps 4 through 9 until the spot does not move as the VERNIER control is rotated.

Figure 2-3

INTERNAL SWEEP - INTERNAL SYNCHRONIZATION

1. Set HORIZ. SENSITIVITY switch to INT. SWEEP X1 (or to X5 for magnified sweeps)
2. Set SYNC switch to INT.
3. Set SWEEP MODE to PRESET.
4. Connect vertical input signal into vertical input terminals.
5. Set $\mathrm{AC}-\mathrm{DC}$ switch for type coupling desired.
6. Adjust VERT. SENSITIVITY for desired sensitivity.
7. Set TRIGGER SLOPE switch for triggering on positive or negative slope of input signal, as desired.
8. Set TRIGGER LEVEL control to 0 .
9. Select desired sweep speed with SWEEP TIME/CM switch.
10. Adjust TRIGGER LEVEL to start trace at desired level. In some cases, it may be necessary to switch SWEEP MODE from PRESET to an individual adjustment for the particular trace being viewed.

Figure 2-4

INTERNAL SWEEP - EXTERNAL SYNCHRONIZATION

1. Set HORIZ. SENSITIVITY switch to INT. SWEEP X1 (or to X5 for magnified sweeps).
2. Set SYNC switch to EXT.
3. Set SWEEP MODE to PRESET.
4. Feed synchronizing signal (0.5 volts $p-p$ or more) to the horizontal input terminals.
5. Set AC-DC switch for type coupling desired.
6. Set TRIGGER LEVEL to 0 .
7. Feed vertical input signal into vertical input terminals.
8. Adjust VERT. SENSITIVITY for desired sensitivity.
9. Select desired sweep speed with SWEEP TIME/CM switch.
10. Set TRIGGER SLOPE for triggering on positive or negative slope, as desired.
11. Adjust TRIGGER LEVEL to start trace at desired level. In some cases, it may be found necessary to switch SWEEP MODE from PRESET to an individual adjustment for the particular trace being viewed.

Figure 2-5

EXTERNAL HORIZONTAL INPUT

1. Feed horizontal signal to horizontal input terminals.
2. Set AC-DC switch for type of input coupling desired.
3. Set HORIZ. SENSITIVITY switch for desired sensitivity.
4. Adjust horizontal position of pattern with HORIZ. POS. control.

This type of input will be found useful for viewing Lissajous patterns, etc.

Figure 2-6

AC COUPLING BALANCED INPUT

The following procedure is for the vertical input, but is the same for the horizontal input.

1. Set VERT. SENSITIVITY to 50 MILLIVOLTS/ $C M$, input not balanced on higher ranges.
2. Set AC-DC switch to AC.
3. Disconnect shorting strap.
4. Connect 0.1 microfarad capacitor to midterminal.
5. Connect input signal to A and B.
6. Ground input at the black terminal.

The capacitor must be used to block any dc.

Figure 2-7

CONNECTION TO CRT DEFLECTION PLATES

The following procedure is for connecting external signals to the vertical deflection plates, but is the same for the horizontal plates.

1. Remove rear access plate fastened by four screws.
2. Remove the shorting bars between the Vertical Amplifier and terminals D3 and D4 and replace them with 1 megohm, $1 / 2$ watt resistor.

For balanced AC coupling:
3. Connect balanced signal through appropriate capacitor to D3 and D4.

For single-ended AC coupling:
4. Bypass D4 to chassis with an adequate capacity.
5. Connect the signal to D3 through an appropriate capacitor.

NOTE: If it is desired to have positive voltage deflect the beam downward, bypass D3 to chassis and connect the signal to D4.

Figure 2-8

EXTERNAL INTENSITY MODULATION

CAUTION: Dangerous Voltages are present on this terminal board. Be sure the instrument is turned off when making this connection.

To intensity modulate the CRT with external signals:

1. Remove rear access plate fastened by four small screws at rear of dust cover.
2. Remove shorting bar.
3. Connect modulating signal to these terminals. A positive voltage of 20 volts peak will blank the CRT trace from normal intensity.

Figure 2-9

ALIGNING SCOPE TRACE WITH GRATICULE

CAUTION: DANGEROUS VOLTAGES ARE PRESENT INSIDE THE INSTRUMENT

Remove two screws at rear of dust cover and slide cover off to rear. Fiber lever (2) controls both radial and longitudinal positioning of CRT and is locked by clamp (1).

To align sweep trace with graticule loosen clamp (1) with a screwdriver. Rotate fiber arm (2) until the trace is parallel to horizontal lines on graticule. Tighten clamp (1) after adjustment has been made.

Figure 2-10

SECTION III THEORY OF OPERATION

3-1 GENERAL CONTENT

This section contains a brief description of the over-all operation of the Model 130B Oscilloscope, description of each major section and detailed description of a Schmitt trigger.

3-2 OVER-ALL OPERATION

The block diagram in Figure 3-1 shows the basic circuits of the Model 130B Oscilloscope.

A. VERTICAL AMPLIFIER

The Vertical Amplifier receives the input signal, amplifies ir, and drives the vertical deflection plates of the cathode ray tube. In addition, this amplifier determines the vertical position of the spot on the screen and supplies a signal for synchronizing the sweep with the vertical input signal.

B. HORIZONTAL AMPLIFIER

The Horizontal Amplifier receives its signal either from the horizontal INPUT jack or from the Sweep Generator, amplifies it and drives the horizontal deflection plates of the cathode ray tube. Except for the provisions in the Horizontal Amplifier for amplifying the internally-generated sawtooth voltage, it is essentially the same as the Vertical Amplifier.

C. SWEEP GENERATOR

The Sweep Generator forms a sawtooth voltage to control the horizontal movement of the spot across the face of the cathode ray tube. The Sweep Generator is divided into two parts: 1) a sawtooth generator, 2) a trigger generator, which starts the sawtooth. The trigger gencrator controls allow the operator to choose the point at which the sawtooth sweep begins.

In addition to forming the internal sweep of the oscilloscope, the Sweep Generator also supplies the required unblanking pulse which brightens the trace during each sweep.

D. CALIBRATOR

An internal square-wave calibrator, with a nominal frequency of 300 cps , is provided for setting the basic gain of the amplifiers. Turning either the VERT. or HORIZ. SENSITIVITY switches to CAL., turns on the calibrator supply voltage and connects its output to the appropriate amplifier.

E. CATHODE RAY TUBE

The cathode ray tube is a $5 A Q P$ - monoaccelerator type. It is normally supplied with a Pl phosphor screen but is available in the P7 and P11 phosphors also and P2 upon special order. All are electrically interchangeable and the tube is easily changed. The mono-accelerator anode makes possible a simple astigmatism adjustment which requires no resetting when adjusting the FOCUS or INTENSITY controls. The deflection plate terminals are connected through removable jumpers at the rear of the instrument so that direct connections to the plates can be made easily.

3-3 VERTICAL AMPLIFICATION CHANNEL

The vertical amplification channel consists of three parts: the $\mathrm{AC}-\mathrm{DC}$ switch, the input attenuator, and the amplifier section proper.

A. AC - DC SWITCH

The signal comes into the input terminals and is fed to the AC-DC switch. For ac coupling, a capacitor is switched into the signal path. In the DC position, the signal goes directly to the input attenuator.

B. INPUT ATTENUATOR

The input attenuator is a sixteen position switch having fifteen calibrated ranges (1 MILLIVOLT/CM to 50 VOLTS/CM) and a calibrate position. When the switch is in the CAL. position, the input of the amplifier is directly connected to the output of the internal calibrator. On ranges less sensitive than 50 MILLIVOLTS/CM, singleended frequency-compensated attenuators are inserted ahead of the Vertical Amplifier. On the six most sensitive ranges, balanced-type attenuators are inserted between the second differential amplifier (V2) and the third differential amplifier (V3). On the six most sensitive ranges, balanced input signals may be applied to the input terminals after removing the jumper to the ground terminal. The sensitivity may be varied continuously between ranges by means of the VERNIER control.

C. VERTICAL AMPLIFIER

The Vertical Amplifier consists of four stages of balanced differential amplifiers* in cascade. The first stage (V1) has the VERT. DC BAL. adjustment (R10A, B) in its cathode circuit which adjusts the current division between the two halves of the stage. The second stage has a VERNIEK control in the cathode circuit which varies the gain of the amplifier between ranges of the VERT. SENSITIVITY switch, and another dc balance adjustment (R 20) is also provided. In the last three stages, neutralizing capacitors are used to cancel the coupling effects between the input and output of the amplifier arising from the inter-electrode capacitances. The output of the second stage is fed to the balanced attenuator of the VERT. SENSITIVITY switch. The ourput of the balanced attenuator is connected to the third balanced differential amplifier (V3). The third stage has two potentiometers in its cathode circuit, one controls the vertical position of the pattern (VERT. POS) and the other adjusts the basic gain of the Vertical Amplifier (R40, Gain Adj.). The fourth balanced differential amplifier (V4) is the output stage. The neon lamps in the grid-cathode circuit of V4 protect the tube when the Model 130B is first turned on. The output of V4 drives the vertical deflection plates of the cathode ray tube. In addition, synchronization signals are coupled from

[^0]the plates of V4 and coupled into the Sweep Generator to trigger the sweep during either IN TERNAL + or INTERNAL - synchronization. As a precaution against drift and hum, a regulated dc supply is used for the heaters of the first three stages.

3-4 HORIZONTAL AMPLIFICATION CHANNEL

The Horizontal Amplifier is essentially identical to the Vertical Amplifier, except in the INT. SWEEP X1 and X5 position of the HORIZ. SENSITIVITY switch. In these positions, the sawtooth signal from the Sweep Generator is fed through the sweep attenuator to the grid of V103, the third balanced differential amplifier. In the INT. X5 position, R164, X5 Mag. Adj., in the cathode circuit of V104 sets the gain of the amplifier to obtain sweep magnification of X5. The output of V104 drives the horizontal deflection plates of the cathode ray tube.

3-5 SWEEP GENERATOR

The sweep generator provides a sawtooth voltage to produce linear horizontal movement of the spot across the face of the cathode ray tube when the HORIZ. SENSITIVITY switch is set to INT. SWEEP (X1 or X5). In addition, the sweep generator furnishes the pulse required to unblank the cathode ray tube during each sweep.

The sweep generator consists of a Trigger Generator, a Sawtooth Generator, and a Gate Out Cathode Follower.

A. TRIGGER GENERATOR

The purpose of the Trigger Generator is to receive a synchronizing signal and convert it into a fast, constant-amplitude pulse to start the Sawtooth Generator.

The Trigger Generator consists of a SYNC selector switch (S201), a Trigger Amplifier (V201), and a Trigger Generator (V202). The SYNC selector switch accepts a signal from:

1) the Vertical Amplifier (internal synchronization, + or -),
2) an internal 6.3 volt source (line-frequency synchronization), or
3) the horizontal INPUT terminals (external synchronization).

The synchronizing signal is fed to V201 which amplifies the signal and delivers it in the proper phase, as selected by the TRIGGER SLOPE switch, to the Trigger Generator. Adjustment of the TRIGGER LEVEL control sets the output level of V201, determining the point on the input waveform that will trigger the Trigger Generator (V202). Trigger Generator (V202) is a Schmitt trigger circuit; a discussion of the Schmitt trigger follows:

A Schmitt trigger consists of two amplifiers, A and B, having both plate-to-grid and cathode-tocathode coupling. The circuit has two stable states: A side conducting, B side cut off; B side conducting, A side cut off. Due to regenerative action the change-over from one state to the other is very rapid, producing fast rise and decay times in the square-wave output. The levels at which the change-over takes place (hysteresis limits) can be adjusted to be close together as in the Trigger Generator (V202) or widely spaced as in the Start-Stop Trigger (V203). To trigger the circuit, the A side grid voltage must cross a particular hysteresis limit to change the state of the circuit. For example, if the A side is conducting, driving the grid voltage positive through the upper hysteresis limit will have no effect, but driving the grid voltage negative through the lower hysteresis limit will put the A side out of conduction and B side into conduction.

B. SAWTOOTH GENERATOR

The Sawtooth Generator consists of StartStop Trigger (V203), and Integrator Switch (V205), a Feedback Integrator (V206B), and Integrator Cathode Follower (V206A), and a Retriggering Hold-Off Cathode Follower (V207B).

Start-Stop Trigger (V203), a Schmitt trigger circuit, is fed by Trigger Generator (V202). The square wave output of V203 is fed directly to the Integrator Switch (V205), which in turn controls the action of Feedback Integrator (V206B). When V203 produces a negative pulse, it causes V205 to cut off permitting V206B to commence operation.

Feedback Integrator (V206B), a Miller integrator circuit*, generates essentially a positive linearly rising waveform, which is applied to the Horizontal Amplifier to sweep the trace across the face

[^1]of the cathode ray tube. The rate at which this sweep takes place is determined by the values of the RC network in the grid circuit of V206B. These values are varied by the SWEEP TIME switch. The output of V206B is fed through a neon lamp (I 203) to the Integrator Cathode Follower (V206A). Neon lamps (I 204 to I 206) are used to drop the voltage to the proper level and at the same time furnish a direct-coupled path for the signal. The neon lamps are shunted with a capacitor to improve the high-frequency response of the circuit, and a series resistor is used to eliminate any tendency toward oscillation.

The output of the Integrator Cathode Follower (V206A) is fed to two circuits: 1) through the sweep attenuator to the Horizontal Amplifier and 2) to the Retriggering Hold-Off Cathode Follower (V207B) in the Sawtooth Generator feedback circuit. During the Sweep, V207B conducts and the capacitor in its cathode circuit charges. However, at the termination of the sweep, V207B is cut off and the cathode capacitor discharges, maintaining a positive bias on the grid of V203A. This hold-off bias allows sufficient time between sweeps for the Sweep Generator to recover. The bias which determines the triggering level of the Start-Stop Trigger (V203A) is supplied by the Retriggering Bias Control (V207A). The bias is adjusted by the SWEEP MODE control, R218, in the grid circuit of V207A.

C. GATE OUT CATHODE FOLLOWER

Another function of the Start-Stop Trigger is to furnish a pulse to unblank the cathode ray tube. The Gate Out Cathode Follower (V204), couples the required positive unblanking pulse from the Start-Stop Trigger to the grid of the crt for the duration of the sweep.

3-6 LOW VOLTAGE POWER SUPPLY

The low-voltage power supply consists of four regulated voltage supplies, three positive $(+585 \mathrm{~V}$, $+300 \mathrm{~V},+100 \mathrm{~V}$) and one negative (-150 V), furnishing the plate voltages and dc filament voltages required for the instrument.

The operation of each of the four regulators is similar; only the -150 volt supply will be discussed. V306, V307 and V308 constitute the voltage regulator circuit for the -150 volt supply. V308, a glow discharge tube, provides a fixed reference voltage for the cathode of V307, the

Control Tube. V306 operates as the regulator tube (or variable resistor), controlled by the voltage at the plate of V307. If the regulated output from the cathode of V306 tends to increase, the voltage at the grid of V307 tends to increase, causing V307 to draw more current. This lowers the plate voltage of V307 and the grid voltage of V306, resulting in greater plate resistance for V306. Increased plate resistance causes a greater voltage drop across V306, compensating for the increased output voltage from the regulator and resulting in a substantially constant output.

If the regulated output tends to decrease, the reverse of the above action occurs, tending to maintain the output voltage constant. In the same manner, changes in voltage at the screen of V307 compensate for variations and ripple in the input (unregulated) voltage. The output of the -150 volt supply serves as the reference voltage for the three positive-voltage supplies.

3-7 HIGH-VOLTAGE POWER SUPPLY

The high-voltage power supply provides regulated dc voltage to the cathode and control grid of the cathode ray tube. The high-voltage power supply consists of an RF Oscillator tube (V313), a highvoltage transformer (T302), high-voltage rectifiers (V310,311) and a High-Voltage Control Tube (V312). The RF Oscillator, a Hartley circuit, oscillates at a frequency of approximately 100 kc . The high-voltage transformer has two separate secondaries which feed the High-Voltage Rectifiers.

The output of V310 is connected to the cathode of the cathode ray tube. A fraction of this voltage is fed to the High-Voltage Control Tube V312, a dc-coupled amplifier. The output of V312 is fed back to the screen of RF Oscillator tube (V313) in proper phase to oppose any change in the highvoltage output. The INTENSITY control in the output of this supply determines the voltage on the cathode of the cathode ray tube.

The output of V311 is connected to the control grid of the cathode ray tube, and normally the crt beam is cut off. During the sweep operation, a positive
pulse from the Gate Out Cathode Follower (V204) in the Sweep Generator circuit overrides the negative crt grid cutoff voltage and unblanks che cathode ray tube. The brilliance of the trace may be adjusted with the Intensity Adjust potentiometer (R343), in series with grid-voltage supply.

3-8 CALIBRATOR

The Calibrator, a square-wave oscillator, produces an accurate voltage across R244 for application to either amplifier for setting the basic gain. Turning either the VERT. or HORIZ. SENSITIVITY switches to CAL. turns on the Calibrator and connects its output to the appropriate amplifier.

The Calibrator consists of two neon lamps (I 207 and I208) in a relaxation oscillator circuit. Operation of the Calibrator is as follows:

When the +300 volt supply is applied to the Calibrator, 1207 will ionize first due to higher potential across it compared to the potential across I 208. When I 207 fires it will draw current through R243. However, the voltage at the junction of R242, C213 and R243 will build up slowly because the voltage across a capacitor cannot change instantaneously. As C213 allows this voltage to change, the voltage at the common junction of I 207 and I 208 will also change, since the voltage drop across the ionized neon lamp is constant (approximately 60 volts). As the voltage at the common junction of I 207 and I 208 reaches approximately +70 volts, 12.08 will fire. This additional current through R240 and R241 will reduce the voltage across I 207 and it will de-ionize. 1208 remains lit until the voltage across C213 charges through R243 to a voltage approximately 70 volts below the voltage that appears at the common junction of I 207 and 1208. I 207 will now fire and the action will repeat itself.

I 208 is thus alternately turned off and on at a rate of approximately 300 cps . The output of the Calibrator is taken from the current passing through R244 and I 208. The output is approximately a square wave which can be set with R240 to obtain 300 millivolts in amplitude.

SECTION IV MAINTENANCE

4－1 INTRODUCTION

This section contains instructions for testing，ad－ justing，and trouble shooting the Model 130B Oscilloscope．

Standard，readily available components are used for manufacture of instruments whenever pos－ sible．Special components are available through your local stock for your convenience．

When ordering parts，specify instrument model and serial number plus the component description and stock number appearing in the Table of Re－ placeable Parts．

Your local 掵 Representative maintains complete facilities and specially trained personnel to assist you with any problems you may have with（\％p instruments．

The material in this section is divided according to circuit functions，each section having a com－ plete set of adjustment instructions．The material in this section is as follows：

4－2 Simple Check Procedure

4－3 Isolating Troubles to Major Sections
4－4 Removing the Cabinet
4－5 Connecting for 230 Volt Operation
4－6 Tube Replacement
4－7 Condensed Test and Adjustment Procedure
4－8 Adjustment Procedure
4－9 Turn On
4－10 Power Supplies
4－11 Replacing and Adjusting the CRT
4－12 Checking and Adjusting the Calibrator
4－13 Adjusting the Vertical Amplifier
4－14 Adjusting the Horizontal Amplifier
4－15 Phase Shift Adjust
4－16 Adjusting Preset
4－17 Adjusting the Sawtooth Generator and Sweep Amplifier

The following test equipment is used for testing and adjusting the Model 130B Oscilloscope during manufacture．Equivalent test equipment may be used．

1）A high impedance dc vacuum tube voltmeter， such as an 佪 Model 410B with an（需 Model 459A DC Voltage Multiplier，calibrated to an accuracy of $\pm 1 \%$ ．

2）A high impedance ac vacuum tube voltmeter， such as an（tp）Model 400D／H／L．

3）A variable power line transformer with a mini－ mum rating of 3 amps ．

4）A square－wave generator such as an Model 211 A ．

5）A sine－wave oscillator with a maximum fre－ quency of at least 500,000 cycles，such as an （6）Model 200CD．

6）An accurate time mark generator suitable for sweep speed calibration．

4－2 SIMPLE CHECK PROCEDURE

This check should be performed first whenever in－ strument malfunction is suspected．It is not neces－ sary to remove the instrument from the cabinet．

Set both VERT．and HORIZ．SENSITIVITY switches on CAL．The pattern should be a straight line tilted at 45 degrees．In addition，the deflection should be a total of six centimeters in the hori－ zontal and vertical directions．

If the proper pattern is obtained，it is likely that both the Vertical and Horizontal Amplifier，the Power Supplies and the Calibrator are functioning properly．To check the Sweep Generator proceed as follows：

Figure 4-1. Location Diagram for Major Circuits

1) Leaving the VERT. SENSITIVITY switch in CAL, switch HORIZ. SENSITIVITY switch to INT. SWEEP X1.
2) Switch SWEEP TIME/CM switch to 1 MLLLISECOND. A six centimeter square-wave pattern should appear on the screen. If no pattern is obtained be sure SWEEP MODE is in PRESET, SYNC switch is in INT., and adjust TRIGGER LEVEL to trigger. If a pattern cannot be obtained, the malfunction is most likely in the Sweep Generator.

4-3 ISOLATING TROUBLES TO MAJOR SECTIONS

Determining which major section contains a malfunction is usually not a difficult process, if the following general rules are remembered.

1) A failure affecting all major sections can usually be traced to the power supply.
2) A failure occurring in the last two stages of the Horizontal Amplifier also will affect internally generated sweeps, while a failure in the first two stages affects only the Horizontal Amplifier.
3) A sweep Generator failure affects internally generated sweeps only, and does not affect the Horizontal Amplifier.
4) If following the Simple Check Procedure does not produce a trace or spot on the screen, measure the voltages on the deflection plates of the Cathode-Ray Tube (deflection plate terminal board is a convenient place to measure). If, with both VERT. and HORIZ. SENSITIVITY switches set to 50 MILLIVOLTS/CM, these voltages can be set to approximately 480 vdc using the position controls, look for trouble in the high voltage section of the power supplies. If one set of deflection plates has unbalanced voltages, or if the position control must be turned far from its mechanical center to balance these voltages, look for trouble in that amplifier. If both sets of deflection plates have unusual voltages, look for trouble in the power supply.
5) If the series heater string should open, all major sections will be inoperative.
6) The two sides of the direct-coupled differential amplifier, such as are used in the Vertical and Horizontal Amplifiers on the 130B, are balanced and, unless a signal is present, the spot will be motionless in the center of the screen. Any signal,
whether this signal is applied to the input terminals or is supplied by an internal source, such as a positioning or balance control, causes the spot to move from the center of the screen. As the instrument ages it is to be expected that a drift will occur which must be compensated by internal adjustments. However, should there be a component failure in either amplifier the spot will be thrown off the screen and usually out of range of adjustment of the balance and positioning controls. To isolate the trouble, begin by shorting together the grids of the amplifier closest to the output. If the trace (spot) returns to the screen, the fault is ahead of this stage. Proceed towards the front of the amplifier. If shorting the grids of one stage does not return the spot to the screen, the fault is in this stage, or if there is a balancing control in this stage, it may be out of adjustment.
7) To check the Sweep Generator quickly, set the SWEEP TIME/CM switch to 5 or 10 MILLISECONDS/CM, turn the SWEEP MODE control to FREE RUN, and observe 1201, I 202 and I 203. These are the three neon lamps near V206 (6AW8) on the Sweep Generator etched circuit board. If these lamps flicker regularly, the Sweep Generator is sweeping. Turning the SWEEP MODE into the TRIGGER region should stop the generation of sweeps and, hence, the flickering of the neon lamps.

4-4 REMOVING THE CABINET

In the cabinet model, remove the two screws at the rear of the cabinet, and push the instrument forward.

If the $130 B R$ has been rack-mounted with brackets as described in Figure 1-1, remove the screws which pass through the front panel, and withdraw the chassis. If the instrument is out of the rack, turn it on its face (handles will protect the controls), remove the two screws at the rear, and lift off the dust cover.

4-5 CONNECTING FOR 230 VOLT OPERATION

Unless otherwise requested by the customer, (4) instruments are shipped with their power transformer primaries connected in parallel for operation on 115 volt (nominal) power lines.

To convert to 230 volt supply, remove the instrument from its cabinet or dust cover by removing the two screws at the rear of the chassis, and
push the chassis forward. At the primary of the power transformer (marked A), remove the wires connecting terminals 2 and 5 , and 1 and 4. Then connect 1 to 2 as shown in Figure 4-2, and replace the 2 amp slow-blow fuse (F301) with a 1-1/4 amp slow-blow fuse. The instrument may now be connected to the 230 volt line.

Figure 4-2. Line Voltage Connection

4-6 TUBE REPLACEMENT

In many cases instrument malfunction can be corrected by replacing a weak or defective tube. Before changing the setting of any internal adjust-
ment, check the tubes. Adjustments made in an attempt to compensate for a defective tube will often complicate the repair problem.

It is a good practice to check tubes by substitution rather than by using a "tube checker". The results obtained from the "tube checker" can be misleading. Before removing a tube, mark it so that if the tube is good it can be returned to the same socket. Replace only tubes proved to be weak or defective.

Any tube with corresponding standard EIA (JEDEC) characteristics can be used as a replacement. Where variation in tube characteristics will affect circuit performance, an adjustment is provided. The following table lists the tests and adjustments which should be performed if such tubes are replaced.

The chart in Table 4-2 lists all tubes in the 130B with their functions and adjustments required when replacing tubes. The heaters of some tubes are operated in series from a regulated dc voltage obtained from the Low-Voltage Power Supply. These tubes are identified in the chart with an asterisk and their heaters are shown in the Filament and Primary Detail Schematic. If a tube in the dc string is pulled or burned out, all tubes in the string will be turned off.

4-7 CONDENSED TEST AND ADJUSTMENT PROCEDURE

All basic tests and adjustments are covered in the following Table 4-1. In most cases, this table will cover all normal adjustment needs for the oscilloscope. For a more complete and de-
tailed test procedure refer to paragraph 4-8. If the instrument is not operating, refer to paragraphs 4-3 and 4-6.

If a tube is replaced, refer to Table 4-2 and complete the indicated adjustments.

TABLE 4-1. CONDENSED TEST AND ADJUSTMENT PROCEDURE

TABLE 4-2. TUBE REPLACEMENT CHART

Ref.	Tube	Function	Adjustment
		VERTICAL AMPLIFIER	
V1**	$12 \mathrm{AU7} \ddagger$	Phase Inverter Amplifier	Vertical Amplifier (par. $4-13 \mathrm{~A} / \mathrm{B}$)
V2*	$12 \mathrm{AU7}$	Differential Amplifier	Vertical Amplifier (par. 4-13A/B)
V3*	12AT7	Differential Amplifier	Vertical Amplifier (par. 4-13B)
V4*	6DJ8/6BQ7	Differential Amplifier	Vertical Amplifier (par. 4-13B)
		HORIZONTAL AMPLIFIER	
V101*	12AU7 \ddagger	Phase Inverter Amplifier	Horizontal Amplifier (par. 4-14A/B)
V102*	12AU7	Differential Amplifier	Horizontal Amplifier (par. 4-14A/B)
V103*	12AT7 6DJ8/6BQ7	Differential Amplifier Differential Amplifier	Horizontal Amplifier (par. 4-14B) Sawtooth Generator (par. 4-17)
		SWEEP GENERATOR	
V201*	6DJ8/6BQ7A	Trigger Amplifier	none
V202	$12 \mathrm{AT7}$	Trigger Generator	
V203	6U8	Sweep Start-Stop Trigger	Adj. Preset, Sweep Length (par. 4-15 \& 4-16)
V204	6 C 4	Gate Out Cathode Follower	none
V205*	12AL5	a. Integrator Switch b. Integrator Switch	none
V206	6AW8	a. Integrator Cathode Followe b. Feedback Integrator	none
V207	12AX7	a. Retriggering Hold Off b. Retriggering Bias Control	none
		POWER SUPPLY	
V301	12B4	+300-volt Series Regulator	none
V302	6 6U6	+300-volt Control Tube	none
V303	12B4	+100-volt Series Regulator	none
V304*	6BH6	+100-volt Control Tube	none
V305	6X4	-150-volt Rectifier	none
V306	12B4	-150-volt Series Regulator	none
V307*	6BH6	-150-volt Control Tube	none
V 308	5651	Reference Tube	LV Supply (par. 4-10A)
V309	5 AQP	CRT	Adj.Vert.\& Horiz.Gain (par.4-13,4-14)
V310	1V2	High Voltage Rectifier	none
V311	1 V 2	High Voltage Rectifier	none
V312	12AU7	High Voltage Control Tube	none
V313	6AQ5	RF Oscillator	none
V314	6DJ8/6BQ7A	a. +585 -volt Series Regulator b. +585 -volt Control Tube	none none
* Series dc heater		\ddagger Tested part - See Table of Replaceable Parts	

Figure 4-3. Power Supply Location Diagram

4-8 ADJUSTMENT PROCEDURE

Usually a particular oscilloscope will not need complete testing and calibration. Only one or two tests will be needed and they can be done without completing the entire test procedure.

The following procedures are listed in a recommended sequence for a complete test and calibration operation. In general, tubes are the main cause of trouble and new ones should be tried before making adjustments or other component replacements.

Specifications for the (\$p) Model 130B Oscilloscope are given in the front of this manual. The following test procedures contain extra checks to help you analyze a particular instrument. These extra checks and the data they contain can not be considered as specifications.

A fifteen minute warm-up and power supply output voltage measurements are always recommended before making any other test or adjustment.

4-9 TURN ON

When turning the oscilloscope on for the first time after repair in any circuit, measure resistance from power supplies to ground. They usually will be within 25% of the following:

$$
\begin{array}{lr}
+100 \text { volt supply } & 110 \text { ohms } \\
-150 & 50,000 \text { ohms } \\
+300 & 9,000 \text { ohms } \\
+585 & 85,000 \text { ohms }
\end{array}
$$

CAUTION

When first turning an oscilloscope on after power supply repairs, turn the intensity and both positioning controls full counterclockwise before applying power. Failure to follow this precaution can cause permanent cathode-ray tube damage.

4-10 POWER SUPPLIES

The power supplies in the oscilloscope are extremely stable and will require infrequent adjustment. The output voltages should be measured at regular intervals but unnecessary adjustments should be avoided.

Power supply voltages may be measured at the points indicated in Figure 4-3.

To adjust the power supply section, refer to Figure 4-3, and proceed as follows:

A. LOW VOLTAGE SUPPLY

1) Turn sweep generator off by turning the HOR. SENS. switch to 50 volt/cm position.
2) Permit the 130 B to warm up for at least five minutes at a line voltage of $115 / 230$ volts.
3) Measure power supply voltages with line volts set to 115 volts. The voltages will normally be within the limits given in Table 4-3. Control R332 can be adjusted if necessary to set the +100 volt supply within limits.

If adjustment of the +100 volt supply was necessary, all sweep timing, calibrator and gain adjustments must be checked.

If poor low voltage supply regulation is suspected, the following check may be made:
-- Check the regulation of each power supply voltage as the power line voltage is varied between 103 and 127 volts. All regulated voltages should remain within $\pm 1 \%$ over this range of line voltage.
-- Measure the ac ripple on each supply voltage. This ac voltage should not exceed the amount specified in Table 4-3.

TABLE 4-3. REGULATED POWER SUPPLY TOLERANCES

Supply	Tolerance (115/230 volt line)	Variation $\pm 10 \%$ line voltage change	Nominal Ripple at $115 / 230 \mathrm{~V}$
+100 V	$\pm 4 \%$	$\pm 1 \%$	5 mv
-150 V	$\pm 4 \%$	$\pm 1 \%$	5 mv
+300 V	$\pm 4 \%$	$\pm 1 \%$	5 mv
+585 V	$\pm 4 \%$	$\pm 1 \%$	60 mv

If any output does not regulate or has excessive ripple, replace the Series Regulator Tube or the Control Tube of that supply. It must be kept in mind, however, that loss of regulation of the -150 volts will cause the other supplies to lose regulation, and that loss of regulation of the +100 volts will cause the +585 volt and +300 volt supplies to lose regulation also.

SERVICING ETCHED CIRCUIT BOARDS

Excessive heat or pressure can lift the copper strip from the board. Avoid damage by using a low power soldering iron (50 watts maximum) and following these instructions. Copper that lifts off the board should be cemented in place with a quick drying acetate base cement having good electrical insulating properties.

Use only high quality rosin core solder when repairing etched circuit boards. NEVER USE PASTE FLUX. After soldering, clean off any excess flux and coat the repaired area with a high quality electrical varnish or lacquer.

A break in the copper should be repaired by soldering a short length of tinned copper wire across the break.

When replacing tube sockets it will be necessary to lift each pin slightly, working around the socket several times until it is free.

1. Apply heat sparingly to lead of part to be replaced. Remove part from card as iron heats the lead.

2. Bend clean tinned leads on new part and carefully insert through holes on board.

3. Using a small awl, carefully clean inside of hole left by old part.

4. Hold part against board and solder leads. Avoid overheating the board.

Figure 4-4

B. HIGH VOLTAGE SUPPLY

1) The -2550 volt output is measured on the resistor board under the base of the crt. Connect an appropriate dc voltmeter (such as an (ap) Model 410B VTVM with an (bp) Model 459A DC Resistive Voltage Multiplier) to the Junction of R338, C312 (marked -2550 CATH. on cover).
2) With the line at $115 / 230$ volts the high voltage should measure $-2550 \pm 4 \%$. Control R334 can be adjusted if necessary to set the -2550 volt supply within limits.

If poor -2550 voltage supply regulation is suspected the following check may be made:
-- Check the regulation by varying the line voltage between 103 and 127 volts. The -2550 should remain within $\pm 1 \%$ over this range of line voltage. If the $\mathbf{- 2 5 5 0}$ supply does not regulate check the control tube V312.
3) Set SWEEP TIME/CM to 5 MILLISECONDS.
4) Set HOR. SENS. to INT. SWEEP XI.
5) Set SWEEP MODE fully clockwise to FREE RUN.
6) Set INTENSITY control to $10 o^{\prime}$ clock.
7) Set Int. Adj., R343, until the trace is just visible.
8) Set SWEEP MODE fully counterclockwise to PRESET.
9) Set INTENSITY control for a low intensity spot.
10) Center spot and adjust FOCUS control and ASTIGMATISM (R303) to obtain a small round and sharply focused spot.

4-11 REPLACING AND ADJUSTING THE CRT

To replace the cathode-ray tube, refer to Figure 2-10, and proceed as follows:

1) Turn off and remove the 130 B from the cabinet.
2) Loosen the clamp on the crt socket. (Cabinet model; remove cover from High Voltage terminal board to get access for screwdriver through board).
3) Remove the front-panel bezel.
4) With a screwdriver loosen the crt base from socket. Free the crt from the socket by pressing on the center of the tube base with one hand while supporting the front of the crt with the other. DANGER - Do not apply force on neck of tube.
5) Remove the crt through the front panel.

CAUTION - HANDLE THE CATHODE RAY TUBE CAREFULLY.

6) Insert the replacement crt through the front panel and seat in socket.
7) Replace front-panel bezel.
8) Adjust the socket assembly so that the face of the crt just misses the bezel assembly. Tighten the clamp just enough to hold the crt in place loosely.

NOTE

Turn the INTENSITY control to minimum when first applying power to a crt. The phosphor can be damaged quickly by too much brightness.
9) Set the INTENSITY control fully counterclockwise. Turn the 130 B on and allow to warm up.
10) Set the SWEEP MODE control to FREE RUN.
11) Adjust the INTENSITY control to obtain a weak trace; adjust the FOCUS control for a sharp trace, and with the vertical position control, center the trace vertically.
12) Align trace with graticule using the alignment handle at rear of crt.

CAUTION - Do not over-tighten crt clamp or tube damage may result.
13) Making certain the crt face is close to but not touching the bezel assembly, tighten the clamp on the crt socket only enough to hold the crt from turning. If the face of the tube touches the bezel assembly, Newton rings may be visible.
14) Readjust the astigmatism; see paragraph 4-10B.
15) Check the gain calibration of the Vertical and Horizontal Amplifiers by setting the VERTICAL and HORIZONTAL SENSITIVITY selectors to CAL, and if necessary, adjusting R40 (Figure 4-5) to obtain 6 cm vertical deflection and R144 (Figure $4-6$) to obtain 6 cm horizontal deflection on the trace; see paragraph 4-13B and 4-14B.

Figure 4-5. Vertical Amplifier Adjustment Location

4-12 CHECKING AND ADJUSTING THE CALIBRATOR

1) Set HORIZ. SENSITIVITY to INT. SWEEP X1; SWEEP TIME/CM to 1 MILLISECOND; SWEEP MODE to PRESET; SYNC. to INT.; and TRIGGER LEVEL to " 0 ".

NOTE

If PRESET (SWEEP MODE) is maladjusted, you may not obtain a trace. See paragraph 4-16.
2) Set the VERT. SENSITIVITY switch to 50 MILLIVOLTS/CM. Place the VERNIER control in CAL.
3) Connect the signal source to the vertical $I N$ PUT terminals and set its rms output voltage, read on the vtvm, to 106 millivolts (300 mv / $2 \sqrt{2}$) and its output frequency to 1000 cps .
4) Adjust R40 (see Figure 4-5) to obtain exactly 6 centimeters deflection.
5) Set the VERT. SENSITIVITY switch to CAL.
6) Adjust the R240 (see Figure 4-7) for exactly 6 centimeters deflection.

4-13 ADJUSTING THE VERTICAL AMPLIFIER

The following adjustments are located in the vicinity of the Vertical Amplifier or the VERT. SENSITIVITY switch as shown in Figure 4-5.

A. VERNIER BALANCE ADJUSTMENT

To adjust VERNIER balance, allow the instrument to warm up 15 minutes and adjust Vertical balance as shown by Figure 2-2. Then refer to Figure 4-5 and proceed as follows:

1) Short the INPUT terminals and set the INPUT switch to DC.
2) Set VERT. SENSITIVITY to 1 MILLIVOLT/CM, and VERNIER to CAL.
3) Center spot (or trace) with VERT. POS. control.
4) Turn VERNIER fully counterclockwise and return spot to center with R20, the Bal. Adj.

The trace should now be stationary as the VERNIER is rotated.

B. VERT. AMPL. GAIN AND FREQ. RESP. ADJUSTMENTS

To adjust the Vertical Amplifier gain and frequency response adjustments refer to Figure 4-5 and proceed as follows:

1) Adjust Vertical and VERNIER balance as indicated by Figure 2-2 and paragraph 4-13A.
2) Set HORIZ. SENSITIVITY to INT. SWEEP X1 and set the SWEEP TIME/CM switch to 2 MILLISECONDS, SWEEP MODE to PRESET and TRIGGER LEVEL to " 0 ".
3) Place VERTICAL SENSITIVITY switch and its VERNIER in CAL.
4) Adjust R40 for exactly 6 centimeters deflection.
5) Set VERT. SENSITIVITY to 50 MILLIVOLTS/ CM. Set SYNC to INT.
6) Set SWEEP TIME/CM switch to 5 MICROSECONDS.
7) Connect a 50 kc square wave to the Vertical INPUT and adjust the square-wave amplitude for 6 to 8 centimeters deflection.
8) Adjust C12 for best square wave. To give C12 a range of adjustment sufficient to compensate for variations of tube characteristics, C13 may be connected in parallel with C12 to increase the maximum capacity to $1340 \mu \mu \mathrm{f}$.

C. INPUT ATTENUATOR FREQUENCY RESPONSE ADJUSTMENTS

To adjust frequency response of the input attenuator refer to Figure 4-5 and proceed as follows:

1) Connect a 5 kc square wave to the Vertical INPUT.
2) Set SWEEP TIME/CM to obtain 3 or 4 cycles of the square wave.
3) Make the indicated adjustment for best squarewave presentation on the following ranges:

Figure 4-6. Horizontal Amplifier Adjustment Locations

4-14 ADJUSTING HORIZONTAL AMPLIFIER

To adjust the Horizontal Amplifier, refer to Figure 4-6 and proceed as follows:

A. VERNIER BALANCE ADJUSTMENT

To adjust the VERNIER balance allow the instrument to warm up thoroughly and adjust Horizontal balance as shown by Figure 2-3; then refer to Figure 4-6 and:

1) Short the INPUT terminals and set the INPUT switch to DC.
2) Set the HORIZ. SENSITIVITY to 1 MILLIVOLT/CM and the VERNIER to CAL.
3) Center the spot with the HORIZ. POS. control.
4) Turn the VERNIER completely counterclockwise and return the spot to the center with R120, Bal. Adj. The spot will now be stationary as the VERNIER is rotated.
B. AMPLIFIER GAIN AND FREQUENCY RESPONSE ADJUSTMENTS
To adjust the gain and frequency response, refer to Figure 4-6 and proceed as follows:
5) Set HORIZ. SENSITIVITY switch to CAL. and the VERNIER to CAL.
6) Adjust R144 for exactly 6 centimeters deflection.
7) Set VERT. SENSITIVITY to 2 VOLTS/CM.
8) Connect an 8 kc (approximately) sine wave to the Vertical INPUT of the oscilloscope and to the SYNC. IN terminal of the 211 A square wave generator; adjust the sine wave for 10 cm deflection.
9) Set HORIZ. SENSITIVITY to 50 MILLIvOLTS/CM.
10) Connect a 50 kc square wave to the Horizontal INPUT, and adjust the square wave amplitude for 6 to 8 cm deflection.
11) Adjust C114 for best square wave response.

NOTE

Some vacuum tubes require more capacity for compensation than the maximum value of Cll4.

Capacitor C1l5 may be connected in parallel with C114 to increase the maximum capacity to $1340 \mu \mu \mathrm{f}$, permitting a greater percentage of vacuum tubes to be used.

C. INPUT ATTENUATOR FREQUENCY RESPONSE ADJUSTMENTS

To adjust the frequency response at the input attenuator, refer to Figure $4-6$ and proceed as follows:

1) Set VERT. SENSITIVITY to 2 VOLTS/CM.
2) Connect an 800 cps (approximately) sine wave. to the Vertical INPUT of the oscilloscope and to the Sync-In terminal of the 211 A square wave generator; adjust the sine wave for 10 centimeter deflection.
3) Set HORIZ. SENSITIVITY to 10 VOLTS/CM (VERNIER in CAL.).
4) Connect a 5 kc square wave to the Horizontal INPUT and adjust its amplitude for 6 centimeter deflection.
5) Make the following adjustments on the ranges indicated for the best square wave response, adjusting the square-wave amplitude to 6 centimeters on each range.

VOLTS/CM	ADJUST (see Fig. 4-6)
10	C102
1	C104
. 1	C103

4-15 PHASE SHIFT ADJUST

Phase shift between Vertical and Horizontal Amplifiers.

If the square wave response of the Vertical and Horizontal Amplifier was carefully set, the relative phase shift between the two amplifiers should not exceed one degree at frequencies below 50 kc .

To check Phase Balance:

1) Set VERT. and HORIZ. SENSITIVITY to 50 MILLIVOLTS/CM and VERNIER to CAL.

2) Apply a 50 kc sine-wave signal to the HORIZ. InPUT and VERT. INPUT. Center pattern and adjust signal amplitude for 6 cm vertical and 6 cm horizontal deflection.

Figure 4-7. Sweep Generator Adjustment Locations

The opening of the pattern, if any, should not exceed a tenth of a centimeter. If necessary to correct phase difference, adjust Cll4 for closure of the pattern (Figure 4-6).

4-16 ADJUSTING PRESET

To adjust Preset refer to Figure 4-7 and proceed as follows:

1) Set VERT. SENSITIVITY to OFF, SWEEP TIME/CM switch to . 1 MILLISECOND and SWEEP MODE control maximum counterclockwise to PRESET. Set SYNC selector to INT.
2) Connect a dc voltmeter between ground (+) and the center tap of R220 the PRESET adjust control.
3) Turn R220 fully counterclockwise. Then slowly adjust R220 clockwise until the sweep generator begins to free fun. Turn R220 counterclockwise until the sweep just stops and record this voltage which should be about -26 volts.
4) Set R220 to give a voltmeter indication exactly 2 volts less negative than the voltage noted.

4-17 ADJUSTING THE SAWTOOTH GENERATOR AND SWEEP AMPLIFIER

To adjust the Sawtooth Generator and Sweep Amplifier refer to Figures 4-6 and 4-7 and proceed as follows:

1) Set SYNC to INT., SWEEP MODE to PRESET and TRIGGER LEVEL to " 0 ".
2) Set HORIZ. SENSITIVITY to INT. SWEEP X1, SWEEP TIME/CM to 1 MILLISECOND, and its VERNIER to CAL.
3) Connect $1 \mathrm{kc}(1000 \mu \mathrm{sec})$ time markers to the Vertical INPUT.
4) Set R261, 1 Millisecond Adj., on the potentiometer board, to its mechanical center.
5) Adjust R134, Sweep Attenuator, (Figure 4-6) and HORIZ. POS. for approximately 1 time marker/ cm . This is a rather coarse adjustment. Set it as close as is practical. Then make the final adjustment with R261.
6) Set SWEEP TIME/CM to 10 MILLISECONDS and connect 100 cycle $(10,000 \mu \mathrm{sec})$ time markers to the Vertical INPUT.
7) Adjust R260 (Figure 4-7) for 1 marker per centimeter.
8) Set SWEEP TIME/CM to . 1 SECOND and connect 10 cycle ($100,000 \mu \mathrm{sec}$) time markers to the Vertical INPUT.
9) Adjust R259 (Figure 4-7) for 1 marker per centimeter.
10) Disconnect the time mark generator from the Vertical INPUT, set VERT. SENSITIVITY switch to 10 VOLTS/CM, the Vertical and Horizontal input switches to AC, and SWEEP TIME/ CM to 5 MICROSECONDS.
11) Disconnect the blue-white lead (Figure 4-7) from the Sweep Generator board and connect it through a 1 microfarad capacitor to the Horizontal INPUT.
12) Connect a wire between V206 pin 1 (6AW8) and the Vertical INPUT.
13) Connect a 50 kc square wave from the 600 ohm output of the (50) Model 211A to the Horizontal INPUT and adjust its amplitude for about 6 centimeter deflection.
14) Adjust C113 near the HORIZ. SENSITIVITY switch, and C116 and C118 on the Horizontal Amplifier board (Figures 4-6 and 4-7), for best square wave presentation. Remove the wire between V206 pin 1 and the Vertical INPUT.
15) Reconnect the blue-white lead to the Sweep Generator board, and connect the time marker generator to the Vertical INPUT. Make the following adjustment as indicated for 1 time marker per centimeter.
(Fig. 4-7)

me Marker S	SWEEP TIME/CM	Adjust
$1 \mu \mathrm{sec}(1 \mathrm{mc}$)	1 MICROSEC.	C227
$10 \mu \mathrm{sec}(100 \mathrm{kc}$)	10 MICROSEC.	C225
. $1 \mathrm{msec}(10 \mathrm{kc}$)	. 1 MILLISEC.	C223

16) Set HORIZ. SENSITIVITY to INT. SWEEP X5, and adjust R164 (Figure 4-6), for markers 5 centimeters apart.
17) Connect a 500 kc signal to the Horizontal INPUT, set SWEEP TIME/CM to 1 MILLISECOND, set SYNC to EXT, and adjust R229, Sweep Length, (Figure 4-7) for a trace about 10.5 centimeters long.

SCHEMATIC DIAGRAM NOTES

1. Heavy solid line shows main signal path; heavy dashed line shows control, secondary signal, or feedback path.
2. Heavy box indicates front-panel engraving; light box indicates chassis marking.
3. Arrows on potentiometers indicate clockwise rotation as viewed from the round shaft end, counterclockwise from the rectangular shaft end.
4. Resistance values in ohms, inductance in microhenries, and capacitance in micromicrofarads unless otherwise specified.
5. Rotary switch schematics are electrical representations; for exact switching details refer to the switch assembly drawings.
6. Relays shown in condition prevailing during normal instrument operation.
7. \ddagger indicates a-selected part. See parts list.
8. Interconnecting parts and assemblies are shown on cable diagram.
9. * indicated value adjusted at factory. Part may be omitted.

VOLTAGE AND RESISTANCE DIAGRAM NOTES

1. Each tube socket terminal is numbered and lettered to indicate the tube element and pin number, as follows:

$*$	$=$ no tube element
\mathbf{H}	$=$ heater
\mathbf{K}	$=$ cathode
\mathbf{G}	$=$ control grid
$\mathbf{S c}=$ screen grid	
Sp	$=$ suppressor grid
$\mathbf{H m}=$ heater mid-tap	
IS	$=$ internal shield

```
P = plate
T = target (plate)
R = reflector or repeller
A = anode (plate)
S = spade
Sh = shield
NC = no external connection to socket
\Delta = indefinite reading due to circuit (see 2.)
```

The numerical subscript to tube-element designators indicates the section of a multiple-section tube; the letter subscript to tube-element designators indicates the functional difference between like elements in the same tube section, such as t for triode and p for pentode.

A socket terminal with an asterisk may be used as a tie point and may have a voltage and resistance shown.
2. Voltages values shown are for guidance; values may vary from those shown due to tube aging or normal differences between instruments. Resistance values may vary considerably from those shown when the circuit contains potentiometers, crystal diodes, or electrolytic capacitors.
3. Voltage measured at the terminal is shown above the line, resistance below the line; measurements made with an electronic multimeter, from terminal to chassis ground unless otherwise noted.
4. A solid line between socket terminals indicates a connection external to the tube between the terminals; a dotted line between terminals indicates a connection inside the tube. Voltage and resistance are given at only one of the two joined terminals.

VERTICAL AMPLIFIER
 VOLTAGE-RESISTANCE DIAGRAM (VIEWED FROM ETCHED SIDE)

HORIZONTAL AMPLIFIER
 VOLTAGE-RESISTANCE DIAGRAM
 (VIEWED FROM ETCHED SIDE)

V104 (6807/60J8)
DIFFERENTIAL AMPLIFIER

V101 (12AU7)
INVERTER AMPLIFIER

FIGURE 4-10

SWEEP GENERATOR VOLTAGE-RESISTANCE DIAGRAM (VIEWED FROM RIGHT SIDE)

$V 204$ (664)
gate out cathode follower

SWEEP START-STOP TRIGGER

TRIGGER GENERATOR

V202 (I2AT7)

$V 207$ (12AX7)
RETRIGGERING BIAS CONTROL

V205 (12 AL5) INTEGRATOR SWITCH

$V 206^{\text {I }}$ (6AWB)
INTEGRATOR CATHODE FOLLOWER

NOTES:
conditions of voltage resistance measurements
a. voltage -

VERT. SENSITIVITY: 50 MILLIVOLTS/CM; VERNIER $=$ CAL; INPUT $=O C$ HORIZ. SENSITIVITY = INT. SWEEP XI; VERNIER = CAL; INPUT $=O C$. SWEEP TIMEICM $=50$ MILLISECONOS; VERNER CAL
TRIGGER SLOPE : +; TRIGGER LEVEL $=0$; SWEEP MOI
TRIGGER SLOPE $=+;$ TRIGGER LEVEL $=0$; SWEEP MODE - PRESET
Resistance -
Same as above, except sync. line.
$\star---------$ TRIGGER GENERATOR ----------

$$
\kappa------ \text { CALIBRATOR }------\cdots
$$

COPYRIGHT 1957 BY hewlett-packard COmpany This drawing is intonded tor the operation
and mainto nonce of Hewlothtpackerd
mevip.
ment and is not to bo

 Howlot-Pockord Compony.
1300-58-T948

SAWTOOTH GENERATOR

r

-58-T948 UNAS

$V 202$ (12AT7)

TRIGGER GENERATOR

V203 (6U8)
SWEEP START-STOP TRIGGER

$V 204$ (6c4)
gate out cathode follower

$\dagger_{\text {FROM }}+100 \mathrm{~V}$ buss

COPYRIGHT 1957 BY HEWLETT-PACKARD COMPANY
This drawing is intended for the operation and maintenance of Hewlett-Packard equip ment and is not to be used otherwise or reproduced without written consent of the Hewlett-Packard Company.
T. 946 A

CATHODE RAY TUBE WARRANTY

The cathode ray tube supplied in your Hewlett-Packard Oscilloscope and replacement cathode ray tubes purchased from 贯, are guaranteed against electrical failure for one year from the date of sale by the Hewlett-Packard Company. Broken tubes or tubes with burned phosphor are not included in this guarantee.

Your local Hewlett-Packard representative maintains a stock of replacement tubes and will be glad to process your warranty claim for you. Please consult him.

Whenever a tube is returned for a warranty claim, the reverse side of this sheet must be filled out in full and returned with the tube. Follow shipping instructions carefully to insure safe arrival, since no credit can be allowed on broken tubes.

SHIPPING INSTRUCTIONS

1) Carefully wrap the tube in $1 / 4^{\prime \prime}$ thick cotton batting or other soft padding material.
2) Wrap the above in heavy kraft paper.
3) Pack in a rigid container which is at least 4 inches larger than the tube in each dimension.
4) Surround the tube withat least four inches of packed excelsior or similar shock absorbing material. Be certain that the packing is tight all around the tube.
5) Tubes returned from outside the continental United States should be packed in a wooden box.
6) Ship prepaid preferably by AIR FREIGHT or RAILWAY EXPRESS. We do not recommend parcel post or air parcel post shipment.

CRT WARRANTY CLAIM

FROM:
DATE: \qquad
NAME:
COMPANY: \qquad
ADDRESS: \qquad
\qquad

Person to contact for further information:
NAME:
TITLE: \qquad
COMPANY: \qquad
ADDRESS: \qquad
\qquad

To process your claim quickly please enter the information indicated below:

1) 分 INSTRUMENT MODEL \qquad SERIAL \qquad
2) TUBE TYPE SERIAL \qquad
3) ORIGINAL TUBE REPLACEMENT TUBE \qquad
4) YOUR PURCHASE ORDER NO.
5) DATE PURCHASED \qquad
6) PURCHASED FROM
7) COMPLAINT: (Please describe nature of trouble) \qquad
\qquad
\qquad
8) OPERATING CONDITIONS: (Please describe conditions prior to and at time of failure \qquad
\qquad
\qquad

NOTE

Readily available standard-components have been used in this instrument, whenever possible. However, special components may be obtained from your local HewlettPackard representative or from the factory.

When ordering parts always include:

1. (47) Stock Number.
2. Complete description of part including circuit reference.
3. Model number and serial number of instrument.
4. If part is not listed give complete description, function, and location of part.

If there are any corrections for the Table of Replaceable Parts they will be listed on an Instruction Manual Change sheet at the front of this manual.

TABLE OF REPLACEABLE PARTS

[^2]TABLE OF REPLACEABLE PARTS

[^3]TABLE OF REPLACEABLE PARTS

[^4]
ERRATA:

IABLE UF REPLACEABLE PARTS

[^5]TABLE OF REPLACEABLE PARTS

[^6]TABLE OF REPLACEABLE PARTS

[^7]TABLE OF REPLACEABLE PARTS

CIRCUIT REF.	DESCRIPTION, MFR. * \& MFR. DESIGNATION		$\begin{aligned} & \hline \text { STOCK } \\ & \text { NO. } \end{aligned}$	\#			
J101	Binding Post Assembly: red	HP*	AC-10D	(2)	See	J1	
	Insulator, binding post (rack model)	1) HP*	AC-54A	(2)	See	J1	
	Insulator, binding post (cabinet moded)	del) HP*	AC-54B	(1)	See	J1	
	Connector Assembly	HP*	G-76K	1			
J102	Same as J2						
L201	Coil, choke: $1 \mu \mathrm{~h} \pm 10 \%$	CG*	48-96	1			
L202	Coil, r.f.: $360 \mu \mathrm{~h}$	CG*	48-63	1			
$\begin{aligned} & \text { L203 thru } \\ & \text { L300 } \end{aligned}$	These circuit references not assign	ned					
L301	Coil, r.f.: $5 \mu \mathrm{~h}$	CG*	48-61	1			
L302	Coil, r.f.: $200 \mu \mathrm{~h}$	CG*	48-34	1			
P1	Cord, power Corser	Cornish Wire Co	812-106	1			
R1	Resistor: fixed, deposited carbon, 900,000 ohms $\pm 1 \%, 1 \mathrm{~W}$	NN^{*}	33-900K	2			
R2	Resistor: fixed, deposited carbon, 90,000 ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$	NN^{*}	33-90K	2			
R3	Resistor: fixed, deposited carbon, 9000 ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$	NN*	33-9000	1			
R4	Resistor: fixed, deposited carbon, 1000 ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$	NN*	33-1000	2			
R5	Resistor: fixed, deposited carbon, 1 megohm $\pm 1 \%, 1 / 2 \mathrm{~W}$	NN^{*}	33-1M	4			
R6, 7	Resistor: fixed, composition, 100,000 ohms $\pm 10 \%, 1 / 2 \mathrm{~W}$	B*	23-100K	4			
R8, 9	Resistor: fixed, composition, 100 ohms $\pm 10 \%, 1 / 2 \mathrm{~W}$	B*	23-100	17			

[^8]TABLE OF REPLACEABLE PARTS

[^9]TABLE OF REPLACEABLE PARTS

[^10]TABLE OF REPLACEABLE PARTS

[^11]TABLE OF REPLACEABLE PARTS

[^12]TABLE OF REPLACEABLE PARTS

* See "List of Manufacturers Code Letters For Replaceable Parts Table".
\# Total quantity used in the instrument.
- R232: Change to resistor, fixed, composition, 1000 ohms $\pm 5 \%, 1 / 2 \mathrm{~W}$; -hp-Stock No. 23-1000-5, Mfr., B

TABLE OF REPLACEABLE PARTS

[^13]TABLE OF REPLACEABLE PARTS

[^14]TABLE OF REPLACEABLE PARTS

[^15]TABLE OF REPLACEABLE PARTS

[^16]TABLE OF REPLACEABLE PARTS

[^17]TABLE OF REPLACEABLE PARTS

[^18]TABLE OF REPLACEABLE PARTS

[^19]TABLE OF REPLACEABLE PARTS

[^20]TABLE OF REPLACEABLE PARTS

[^21]
LIST OF CODE LETTERS USED IN TABLE OF REPLACEABLE PARTS TO DESIGNATE THE MANUFACTURERS

LL Gremar Manufacturing Co.
MM Carad Corp.
NN Electra Manufacturing Co.
Electra Manufacturing Co.
Acro Manufacturing Co.
Alliance Manufacturing Co.
QQ Arco Electronics, Ine.
Astron Corp.
Axel Brothers Inc.
Belden Manufacturing Co.
UU Bird Electronics Corp.
VV Barber Colman Co.
WW Bud Radio Inc.
MANUFACTURER
Aerovox Corp.
Allen-Bradley Co.
Amperite Co.
Arrow, Hart \& Hegeman
Bussman Manufacturing Co.
Carborundum Co.
Centralab
Cinch-Jones Mfg. Co.
Hewlett-Packard Co.
Clarostat Mfg. Co.
Cornell Dubilier Elec. Co.
Hi-Q Division of Aerovox
Erie Resistor Corp.
Fed. Telephone \& Radio Corp.
General Electric Co.
General Electric Supply Corp.
Girard-Hopkins
Industrial Products Co.
International Resistance Co.
Lectrohm Inc.
Littlefuse Inc.
Maguire Industries Inc.
Micamold Radio Corp.
Oak Manufacturing Co.
P. R. Mallory Co., Inc.

Radio Corp. of America
Sangamo Electric Co.
Sarkes Tarzion
Signal Indicator Co.
Sprague Electric Co.
Stackpole Carbon Co.
Sylvania Electric Products Co.
Western Electric Co.
Wilkor Products, Inc.
Amphenol
Dial Light Co. of America Leecraft Manufacturing Co.
Switchcraft, Inc.

Barber Colman
Bud Radio Inc.
Allen D. Cardwell Mfg. Co.
Cinema Engineering Co.
Any brand tube meeting
RETMA standards.
Corning Glass Works
Dale Products, Inc.
The Drake Mfg. Co.
Elco Corp.
Hugh H. Eby Co.
Thomas A. Edison, Inc.
Fansteel Metallurgical Corp.
Gene:al Ceramics \& Steatite Corp. The Gudeman Co.

ADDRESS

New Bedford, Mass.
Milwaukee 4, Wis.
New York, N. Y.
Hartford, Conn.
St. Louis, Mo.
Niagara Falls, N. Y.
Milwaukee I, Wis.
Chicago 24, III.
Palo Alto, Calif.
Dover, N. H.
South Plainfield, N. J.
Olean, N. Y.
Erie 6, Pa.
Clifton, N.J.
Schenectady 5, N. Y.
San Francisco, Calif.
Oakland, Calif.
Danbury, Conn.
Philadelphia 8, Pa.
Chicago 20, III.
Des Plaines, III.
Greenwich, Conn.
Brooklyn 37, N. Y.
Chicago 10, III.
Indianapolis, Ind.
Harrison, N. J.
Marion, III.
Bloomington, Ind.
Brooklyn 37, N. Y.
North Adams, Mass.
St. Marys, Pa.
Warren, Pa.
New York 5, N. Y.
Cleveland, Ohio
Chisago 50, III.
Brooklyn 37, N. Y.
New York, N. Y.
Chicago 22, III.
Wakefield, Mass.
Redwood City, Calif.
Kansas City, Mo.
Columbus 16, Ohio
Alliance, Ohio
New York 13, N. Y.
East Newark, N. J.
Long Island City, N. Y.
Chicago 44, III.
Cleveland 14, Ohio
Rockford, III.
Cleveland 3, Ohio
Pla:nville, Conn.
Burbank, Calif.

Corning, N. Y.
Columbus, Neb.
Chicago 22, III.
Philadelphia 24, Pa.
Philadelphia 44, Pa.
West Orange, N. J.
North Chicago, III.
Keasbey, N. J.
Sunnyvale, Calif.

CODE LETTER

MANUFACTURER
Hammerlund Mfg. Co., Inc.
Industrial Condenser Corp. Insuline Corp. of America Jennings Radio Mfg. Corp.
E. F. Johnson Co.

Lenz Electric Mfg. Co.
Micro-Switch
Mechanical Industries Prod. Co.
Model Eng. \& Mfg., Inc.
The Muter Co.
Ohmite Mfg. Co.
Resistance Products Co.
Radio Condenser Co.
Shalleross Manufacturing Co.
Solar Manufacturing Co .
Sealectro Corp.
Spencer Thermostat
Stavens Manufacturing Co.
Torrington Manufacturing Co.
Vector Electronic Co.
Weston Electrical Inst. Corp.
Advance Electric \& Relay Co.
E. I. DuPont

Electronics Tube Corp.
Aircraft Radio Corp.
Allied Control Co., Inc.
Augat Brothers, Inc.
Carter Radio Division
CBS Hytron Radio \& Electric
Chicago Telephone Supply
Henry L. Crowley Co., Inc.
Curtiss-Wright Corp.
Allen B. DuMont Labs
Excel Transformer Co.
General Radio Co.
Hughes Aircraft Co.
International Rectifier Corp.
James Knights Co.
Mueller Electric Co.
Precision Thermometer \& Inst. Co.
Radio Essentials Inc.
Raytheon Manufacturing Co.
Tung-Sol Lamp Works, Inc.
Varian Associates
Victory Engineering Corp.
Weckesser Co.
Wilco Corporation
Winchester Electronics, Inc.
Malco Tool \& Die
Oxford Electric Corp.
Camloc-Fastener Corp.
George K. Garrett
Union Switch \& Signal
Radio Receptor
Automatic \& Precision Mfg. Co.
Bassick Co.
Birnbach Radio Co.
Fischer Specialties
Telefunken (c / o MVM, Inc.)
Potter-Brumfield Co.
Cannon Electric Co.
Dynac, Inc.
Good-All Electric Mfg. Co.

ADDRESS

New York I, N. Y.
Chisago 18, III.
Manchester, N. H.
San Jose, Calif.
Waseca, Minn.
Chisago 47, III.
Freeport, III.
Akron 8, Ohio
Huntington, Ind.
Chicago 5, III.
Skokie, III.
Harrisburg, Pa.
Camden 3, N. J.
Collingdale, Pa .
Los Angeles 58, Calif.
New Rochelle, N. Y.
Attleboro, Mass.
Mansfield, Ohio
Van Nuys, Calif.
Los Angeles 65, Calif.
Newark 5, N. J.
Burbank, Calif.
San Francisco, Calif.
Philadelphia 18, Pa.
Boonton, N. J.
New York 2I, N. Y.
Attleboro, Mass.
Ch:cago, III.
Danvers, Mass.
Elkhart, Ind.
West Orange, N. J.
Carlstadf, N. J.
Clifton, N. J.
Oakland, Calif.
Cambridge 39, Mass.
Culver City, Calif.
El Segundo, Calif.
Sandwich, III.
Cleveland, Ohio
Philadelphia 30, Pa.
Mt. Vernon, N. Y.
Newton, Mass.
Newark 4, N. J.
Palo Alto, Calif.
Union, N. J.
Chicago 30, III.
Indianapolis, Ind.
Santa Monica, Calif.
Los Angeles 42, Calif.
Chicago 15, III.
Paramus, N. J.
Philadelph:a 34, Pa.
Swissvale, Pa.
New York II, N. Y.
Yonkers, N. Y.
Bridgeport 2, Conn.
New York 13, N. Y.
Cincinnati 6, Ohio
New York, N. Y.
Princeton, Ind.
Los Angeles, Calif.
Palo Alto, Calif.
Ogallala, Nebr.

CLAIM FOR DAMAGE IN SHIPMENT

The instrument should be tested as soon as it is received. If it fails to operate properly, or is damaged in any way, a claim should be filed with the carrier. A full report of the damage should be obtained by the claim agent, and this report should be forwarded to us. We will then advise you of the disposition to be made of the equipment and arrange for repair or replacement. Include model number and serial number when referring to this instrument for any reason.

WARRANTY

Hewlett-Packard Company warrants each instrument manufactured by them to be free from defects in material and workmanship. Our liability under this warranty is limited to servicing or adjusting any instrument returned to the factory for that purpose and to replace any defective parts thereof. Klystron tubes as well as other electron tubes, fuses and batteries are specifically excluded from any liability. This warranty is effective for one year after delivery to the original purchaser when the instrument is returned, transportation charges prepaid by the original purchaser, and when upon our examination it is disclosed to our satisfaction to be defective. If the fault has been caused by misuse or abnormal conditions of operation, repairs will be billed at cost. In this case, an estimate will be submitted before the work is started.

If any fault develops, the following steps should be taken:

1. Notify us, giving full details of the difficulty, and include the model number and serial number. On receipt of this information, we will give you service data or shipping instructions.
2. On receipt of shipping instructions, forward the instrument prepaid, to the factory or to the authorized repair station indicated on the instructions. If requested, an estimate of the charges will be made before the work begins provided the instrument is not covered by the warranty.

SHIPPING

All shipments of Hewlett-Packard instruments should be made via Truck or Railway Express. The instruments should be packed in a strong exterior container and surrounded by two or three inches of excelsior or similar shock-absorbing material.

DO NOT HESITATE TO CALL ON US

PRINTEDINU.S.A

[^0]: * Valley and Wallman, "Vacuum Tube Amplifier", Massachusetts Institute of Technology Radiation Series, vol. 18, pp 441-451. McGraw-Hill Book Company, Inc., New York, 1948.

[^1]: * Millman and Taub, "Pulse and Digital Circuits" pp 216-228, McGraw-Hill Book Company, Inc., New York, 1956.

[^2]: * See "List of Manufacturers Code Letters For Replaceable Parts Table"
 \# Total quantity used in the instrument.

[^3]: * See "List of Manufacturers Code Letters For Replaceable Parts Table".
 \# Total quantity used in the instrument.

[^4]: * See "List of Manufacturers Code Letters For Replaceable Parts Table".
 \# Total quantity used in the instrument.

[^5]: * See "List of Manufacturers Code Letters For Replaceable Parts Table".
 \# Total quantity used in the instrument.

[^6]: * See "List of Manufacturers Code Letters For Replaceable Parts Table".
 \# Total quantity used in the instrument.

[^7]: * See "List of Manufacturers Code Letters For Replaceable Parts Table".
 \# Total quantity used in the instrument.

[^8]: * See "List of Manufacturers Code Letters For Replaceable Parts Table".
 \# Total quantity used in the instrument.

[^9]: * See "List of Manufacturers Code Letters For Replaceable Parts Table".
 \# Total quantity used in the instrument.

[^10]: * See "List of Manufacturers Code Letters For Replaceable Parts Table".
 \# Total quantity used in the instrument.

[^11]: * See "List of Manufacturers Code Letters For Replaceable Parts Table".
 \# Total quantity used in the instrument.

[^12]: * See "List of Manufacturers Code Letters For Replaceable Parts Table".
 \# Total quantity used in the instrument.

[^13]: * See "List of Manufacturers Code Letters For Replaceable Parts Table".
 \# Total quantity used in the instrument.

[^14]: * See "List of Manufacturers Code Letters For Replaceable Parts Table".
 \# Total quantity used in the instrument.

[^15]: * See "List of Manufacturers Code Letters For Replaceable Parts Table".
 \# Total quantity used in the instrument.

[^16]: * See "List of Manufacturers Code Letters For Replaceable Parts Table".
 \# Total quantity used in the instrument.

[^17]: * See "List of Manufacturers Code Letters For Replaceable Parts Table".
 \# Total quantity used in the instrument.

[^18]: * See "List of Manufacturers Code Letters For Replaceable Parts Table".
 \# Total quantity used in the instrument.

[^19]: * See "List of Manufacturers Code Letters For Replaceable Parts Table".
 \# Total quantity used in the instrument.

[^20]: * See "List of Manufacturers Code Letters For Replaceable Parts Table".
 \# Total quantity used in the instrument.

[^21]: * See "List of Manufacturers Code Letters For Replaceable Parts Table".
 \# Total quantity used in the instrument.

